
Some aspects of the synchronization in coupled maps

Sandro E. de Souza Pinto,* José T. Lunardi, Abdala M. Saleh, and Antonio M. Batista
Grupo de Física Teórica, Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, Avenida Gal. Carlos

Cavalcanti 4748. CEP 84032-900, Ponta Grossa, Paraná, Brazil
�Received 14 February 2005; revised manuscript received 7 June 2005; published 29 September 2005�

We numerically study the synchronization behavior of a coupled map lattice consisting of a chain of chaotic
logistic maps exhibiting power law interactions. We report two main results. First, we find a practical lower
bound in the lattice size in order that this system could be considered in the thermodynamic limit in numerical
simulations. Second, we observe the existence of a strong correlation between the Lyapunov dimension and the
averaged synchronization time.
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Coupled map lattices �CMLs� were introduced in the lit-
erature as suitable models to study spatiotemporal behavior
of spatially extended dynamical systems. Fundamentally,
they are systems defined on a discrete space time and pos-
sessing continuous state variables. In the last two decades,
such models have received a great, and increasing, deal of
interest, which is being applied to several nonlinear phenom-
ena including systems as diverse as physical, chemical, and
biological �1�. CMLs share with real complex systems one of
their most intriguing behaviors, which is the possibility of
synchronization. Such a phenomenon can be observed in a
great variety of real systems, going from electronic circuits
to physiological processes, for example �2�.

We shall be concerned here with a CML consisting of a
chain of N interacting identical �chaotic� maps, located at
definite sites i=1, . . .N. In the absence of interactions, the
maps dynamics are governed by xn+1

�i� = f�xn
�i��, where xn

�i� de-
note the state, or amplitude, of the map located at the site i at
the discrete time n=0,1,2,…, and we assume, without loss of
generality, that f�x� is some nonlinear function mapping the
interval �0, 1� onto itself. At the time n the state of the whole
lattice, or the system state, is defined as the N-dimensional
vector xn= �xn

�1� ,xn
�2� , . . . ,xn

�N��. Moreover, we will be re-
stricted to the class of CMLs whose dynamics are linear in
the map functions, i.e., of the form

xn+1 = �1 + I�F�xn� � B F�xn� , �1�

with Bij � 0 ∀ i, j and 0 � �
j

Bij � 1 ∀ i , �2�

where F�x�= �f�x�1�� , f�x�2�� ,… , f�x�N��� and I is an N�N
matrix giving the coupling between the maps. Conditions �2�
are necessary and sufficient to hold xn

�i�� �0,1� for all i, all n,
and all the possible initial conditions.

To study the synchronization of the lattice, we shall use
the following definition �2�. A system is said to be in a com-
pletely synchronized state at time n if all the elemental maps
have the same amplitude, i.e., xn

�1�=xn
�2�= . . . =xn

�N�=xn
*. The

subspace S of all these states �the diagonal of the whole state

space of the system� will be called invariant, or the synchro-
nization subspace, if xm�S implies that xn�S for all n
�m �2�. The necessary and sufficient condition for S to be
invariant is that the sum in the second of conditions �2� be
the same for all rows. In this case, given the initial condi-
tions, a synchronized regime starts at the instant m when �and
if � the system state is put in S for the first time. This instant
will be called ts, the synchronization time.

Now we shall specialize the use to the case where the
elemental maps are the fully chaotic logistic ones, i.e., f�x�
=4x�1−x� , x� �0,1� �3�, and the matrix I is symmetric, cor-
responding to a power law long range coupling �4�, whose
elements are given by Iij =��−1�rij

−��1−�ij�−��ij�, where rij
= 	i− j	 is the “distance” between sites i and j. The parameters
� and � give, respectively, the strength and the range of the

interaction and �=2�r
N�r−� is a normalization factor, with

N�= �N−1� /2. The parameter � can assume any nonnegative
value. The extreme cases �=0 and �→	 correspond, re-
spectively, to global �mean field� and local �first neighbors�
couplings. The first of the conditions �2� restrict the param-
eter � to the unit interval �0, 1�. The second condition is
automatically fulfilled, because � jIij =0 for all i. With this
last result the subspace S turns out to be invariant. Some
recent works assume � taking values outside the unit interval
�see, for instance, �5��. In these cases, we must depart from
the “linear” coupling �1�.

Our aim in this report is to go a step further in understand-
ing the synchronization of this system through the analysis of
the synchronization time and the Lyapunov dimension. The
initial state of each elemental map is assumed to be ran-
domly chosen. Besides, we always assume odd N and peri-
odic boundary conditions. Given N, and if the lattice is not
initially synchronized, it only will synchronize after some
time m if the parameters � and � assume values inside a
restricted domain in the parameter space �6�. In such a case
the basin of attraction to the synchronization subspace turns
out to be the entire state space. This domain has boundaries
which can be analytically calculated from the condition 
2
=0, where 
2 is the largest Lyapunov exponent transversal to
the synchronization subspace �7,8�. These boundaries can be
decomposed into an upper line, given by �c��� ,N�
=min��up�� ,N� ,1.0�, with �up�� ,N�=3/2�1−b�N�� /��−1, and
a lower one, �c�� ,N�=min��lo�� ,N� ,1.0�, with �lo�� ,N�*Corresponding author. Electronic address: sandroesp@uepg.br
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=1/2�1−b�1� /��−1. Here b�k�=2�m=1
N� cos�2�km /N�m−��1

�k�N� are the eigenvalues of the circulant matrix B̃
=��−1I+�1 �7�. For instance, the domains for N=5 and N
=385 are shown in Figure 1. We can observe two distinct
regions for each N. For N=385, and if it does not start syn-
chronized, the lattice synchronizes only in region �a�, while
for N=5 it synchronizes only in regions �a� and �b�.

On the state space of the system it can be defined as the
quantity dn=�n


N, where �n is the standard deviation of the
map amplitudes around their mean value. It turns out that
this quantity corresponds, at each time n, to the distance, in
the state space, from the system point xn to the straight line
corresponding to the synchronization subspace S �9�. We
then use the condition dm=0 as a diagnostic for the synchro-
nization regime. Alternatively, we could use as a diagnostic
the condition �n=0 �10�. However, due to the limited preci-
sion of numerical simulations, a quantity q will be consid-
ered equal to zero if q
10−16 �we use double precision�.
Taking into account this limitation, the diagnostic based on
the distance dn turns out to be more accurate than that based
on the standard deviation �n. For instance, if all the maps,
except a single one, have the same amplitude �inside the
numerical precision�, the “distance criterion” says that the
system is not synchronized, independently of the lattice size
N. Instead, there will be a sufficiently large N for which the
“standard deviation criterion” will say that the same system
is synchronized.

Figure 2 is a plot of the averaged synchronization time �ts�
versus the strength parameter �, for two values of N and �
�11�. For N=5 �Fig. 2�a��, and for both the values of �, we
observe an unexpected behavior for the synchronization time
when ��0.8. We would expect that, having fixed all the
other parameters, �ts� were always a decreasing function of
the interaction strength, because it would seem reasonable to
think that greater values of the strength would tend to accel-
erate the synchronization. We have constructed several simi-
lar plots, not presented here, by changing the values of N and

�. From such simulations, we could observe clearly that the
“turning point” �=��1�, above which �ts� starts to increase,
depends only on N �of course, with � inside the synchroni-
zation domain� and it could be identified by the formula
��1�= ��up�0,N�−�lo�0,N�� /2. Of course, the values of N for
which this atypical behavior is suppressed can be achieved
by requiring that ��1��1. From the above formula, we can
observe that this requirement will be satisfied for N�Nmin
=385. This is numerically corroborated in Fig. 2�b�, which
shows the behavior of �ts� for N=Nmin. These results indicate
that the behavior of the synchronization time for N=5 is
characteristic of small lattices. By the way, such a behavior
was not observed when we varied the parameter �.

In Figure 3�a�, we plotted the averaged synchronization
time with varying N, with both � and � fixed. We can ob-
serve that �ts� tends to saturate for large N. Moreover, the
saturated time does not differ significantly from that corre-
sponding to N=Nmin. This saturation is typical, i.e., still oc-
curs even if we vary � and �.

Now we consider the parameters of CML in an outer vi-
cinity of the synchronization domain. The system no longer
synchronizes unless it starts synchronized. Figure 4�a� is a
typical plot for a time series of distances dn in such a case.
To make the visualization easier, we presented our results in
terms of yn=−log10dn. Figure 4�b� shows the corresponding
statistical distributions of yn. Again the results suggest that,
for large lattices, such a distribution is practically indepen-

FIG. 1. Domains of synchronization in the parameter space. For
N=5 the CML synchronizes only in regions �a� and �b�; for N
=385 it synchronizes only in region �a�.

FIG. 2. Averaged synchronization time �ts� vs �, with �=0.0
and �=0.6. �a� N=5; �b� N=385.

FIG. 3. �a� �ts� vs N. �b� D vs N. In both plots �=0.0 and �
=1.0. The vertical line corresponds to N=385.
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dent of N and it is very well approximated by the distribution
corresponding to N=Nmin. Additionally, we observe that
these statistical distributions exhibit power law scalings with
respect to the distance. Besides, taking into account the be-
havior of the second largest Lyapunov exponent in this out-
side region, we can infer that changes in the parameters �
and � affect only the slope of these distributions, which in-
creases with increasing � and decreases with increasing �.

All the results presented so far indicate that N=Nmin
=385, apart from eliminating the aforementioned finite size
qualitative effects of the synchronization time, also furnishes
a reasonable quantitative approximation to the behavior of
the system for larger N values, at least in what concerns the
synchronization time and the statistical distribution of dis-
tances dn. Such results motivate us to claim, at least in what
concerns these two aspects, that Nmin sets a practical lower
bound in numerical simulations for the system to be consid-
ered at the thermodynamic limit. With this statement we
mean that both the qualitative and quantitative behaviors of
the system at the thermodynamic limit N→	 can be reason-
ably well approximated by its corresponding behavior when
N=Nmin.

Now, we recall that the time oscillation of dn in Fig. 4�a�
is due to the coexistence of both stable and unstable
Lyapunov exponents in the direction transversal to the in-
variant subspace S �6�. Therefore, a closer examination of
the Lyapunov spectrum could reveal some new aspects of the
synchronization behavior. We thus consider the Lyapunov
dimension of the system, which is a suitable concept to study
the Lyapunov spectrum and is defined as follows. Let 
 j �j
=1,2,…� denote the jth largest Lyapunov exponent of the
system and p be the largest integer for which � j=1

p 
 j is non-
negative. Then D is given by �3�

D = 

0 if there is no such p

p +
1

	
p+1	�i=1

p


i if p 
 N

N if p = N .
� �3�

Given N, the Lyapunov spectrum and, by its turn, the
Lyapunov dimension, can be analytically determined �7�. In

Figure 5, we depict the Lyapunov dimension D versus the
strength parameter �, for N=5 and N=385, and for two val-
ues of �. We can observe two distinct behaviors for D as �
enters into the synchronization domain. For large N, the
Lyapunov dimension monotonically decreases, but for small
N there is a value �=��2� above which D starts to increase.
Figure 3�b� shows the dependence of D against N, for � and
� fixed within the synchronization domain. We can observe
that the Lyapunov dimension tends to saturate with increas-
ing N.

At this point we call attention to the great similarity be-
tween the behaviors of the averaged synchronization time
�ts� and the Lyapunov dimension within the synchronization
domain. This similarity can be observed by directly compar-
ing the shapes of Figs. 2 and 5 or by comparing Figs. 3�a�
and 3�b�. These plots suggest a correlation between the
Lyapunov dimension and the averaged synchronization time.

FIG. 6. Dispersion diagrams �ts� vs D: �a� �=0.0, �=1.0, and
N� �5,2000� , �=0.9998714; �b� �=0.0, N=501, and �
� ��c�0,501� ,1.0� , �=0.9849924; �c� N=501, �=1.0, and �
� �0.0,0.2� , �=0.9868354.

FIG. 4. �a� Time series for yn with N=385, �=0.6+10−5, and
�=�c�0.6,385�. �b� Distributions of y for several values of N, with
�=0.6+10−5 and �=�c�0.6,N�.

FIG. 5. D vs �, with �=0.0 and �=0.6. �a� N=5 ; �b� N=385.
The vertical lines indicate the boundary of the synchronization do-
main. Inset: detail of �b�.
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In Fig. 6, we plot three dispersion diagrams �ts� vs D, each
one with two of the three parameters, �, �, and N, fixed. All
these diagrams give correlation coefficients � very close to 1,
and they suggest a very strong correlation among these two
quantities. In these plots the dashed lines correspond to the
fitting functions, which are linear in the first case and are
exponentials in the remaining two cases. The origin of such a
strong correlation between so diversely defined quantities is
a point that would need a deeper analysis. Nevertheless, we
could try to understand this result on some intuitive grounds
by observing that it is reasonable to think that the dominance
of negative �positive� Lyapunov exponents in the direction
transversal to the invariant subspace S would tend to mini-
mize �maximize� the synchronization time. This is precisely
the behavior of the Lyapunov dimension, as is obvious from
its definition.

Summarizing, in this report we numerically simulated the
behavior of a CML consisting of a chain of chaotic logistic
maps exhibiting power law interactions. We observed size
dependent behaviors with respect to the averaged synchroni-
zation time �ts� and to the statistical distribution of distances

dn. Such behaviors motivated us to set the size Nmin=385 as
a practical lower bound for this system to be considered in
the thermodynamic limit in numerical simulations. We ar-
gued that the system behavior at the thermodynamic limit
N→	 can be reasonably well approximated, both qualita-
tively and quantitatively, by its behavior at this lower bound.

We also studied the behavior of the Lyapunov dimension
of the system within the synchronization domain. Our results
indicated the existence of a very strong correlation between
this quantity and the averaged synchronization time. The ori-
gin of such a correlation and its related consequences are
subjects that still need more clarifications and it will be post-
poned to future works. Additional studies concerning the
scaling laws for the distribution of distances are now in
progress. On the other hand, we are also considering other
maps and interactions in �1�. The results of these analyses
will be presented elsewhere.
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